
Welcome to our project presentation of Neural 
Networks for object recognition, presenting a fully 
developed model trained by the CIFAR-10 image 
dataset by Keras.



● First a bit of background on Artificial Intelligence 
and object recognition.

● AI is the science of simulating human 
intelligence in machines by programming them 
to 'think', 'learn' and 'perform’ tasks in a way that 
humans would. AI is a discipline that uses 
different technologies, such as machine 
learning, computer vision and natural language 
processing. AI-enabled systems can process big 
data, and spot underlying patterns for important 
decision making. So we can think of AI as "the 
science and engineering of making intelligent 



systems" (IBM, N.D.).

● With AI being ubiquitous, the effects of AI on 
global economies are worth mentioning. While AI 
will replace jobs in areas such as agriculture 
technologies, e-commerce, and digital trade 
these job displacements are offset by job growth 
in other areas like climate change and 
environmental management solutions, big data, 
and cyber security. According to the World 
Economic Forum in this year’s report, this 
offsetting results in a net positive over the next 
five years (World Economic Forum, 2023).

● So varying fields of AI present great interest, with 
computer vision and object detection being the 
main focus of many industries.



● From retail, with self-checkout stores, to the 
automobile industry with self-driving cars, the 
division of AI which relates to allowing machines 
to 'see', is booming.

● Here we see an example of how a machine 
might separate different objects for detection, 
this is where our focus will be today. 



● Because we have been tasked to harness the 
power of discussed AI to train a neural network 
for object recognition with the CIFAR-10 small 
images classification dataset by Keras. 

● This dataset consists of a total of 60,000 32*32 
RGB colour images, evenly split over the 10 
classes at 6,000 images each. The dataset has 
been pre-split by Keras into 50,000 training 
images, and 10,000 test images. We have been 
challenged to create a model that accurately 
classifies the test images into their respective 
categories. 



● As seen here in the top right corner, we created 
a validation set from the training set by splitting 
the training set of 50,000 images with the 
`train_test_split()` function from the 
`sklearn.model_selection` module into an 80/20 
train/test split. We set `random_state` to 0 to 
ensure that the splits are equal each time we 
run the code.

● The reason we used a validation set is to avoid 
overfitting as a consequence of re-using the test 
dataset whilst tuning the models architecture 
and hyperparameters, for example by exploring 
the optimal number of hidden layers or different 



activation layers. The validation set also allowed 
us to implement an “early stop” function, this 
helped us determine when a model’s 
performance started to decline - indicating 
overfitting. This saves time and computational 
power by not running any unnecessary epochs. 
We then perform a final test on unseen data. Like 
Russel & Norvig said, we use “A test set to do a 
final unbiased evaluation of the best model”. 

● Cross-Entropy is the most commonly used 
choice for classification problems as it has been 
found to work very well on these types of models. 
Since we are dealing with categorical data, we 
have applied the Categorical Cross-Entropy loss 
function (Brownie, 2019; androidkt, 2023) - the 
formula is displayed here in the middle of the 
screen and measures the dissimilarity between 
the true distribution and the estimated 
distribution, a measure to establish confidence in 
the classification model. 

● Furthermore the data is preprocessed to 
normalise the pixel values to a value between 0 
and 1 by dividing by the maximum RGB value of 
255. This will aid the neural network in 
processing the input images. 



● The output of the neural network will be a 
probability distribution over the classes, and to 
match this format, the labels are transformed to 
one-hot encoding. This allows for a more direct 
comparison between the neural network’s output 
and the true labels. 



● In the final structure of our ANN there are 2 
hidden layers each consisting of 1,000 neurons. 
Both of these layers use ELU as the activation 
function, `he_uniform` as the kernel initialiser, 
and `truncated_normal` as the bias initialiser.

● We explored multiple activation functions for the 
hidden layers such as Sigmoid, tanh, RELU, 
and Softmax, but found that ELU showed the 
best performance in our model. We did start out 
with Relu, but then we came across ELU which 
according to the literature has the potential for 
higher accuracy than RELU, albeit more 
computationally expensive (Himanshu, S., 2019; 



DJ, 2020)

● By looping through parameter permutations, 
which will be discussed on the next slide, we 
ascertained which activation function and kernels 
could provide optimal model performance. 



As shown in the “ANN Design” section, the first 
decision in our design was which model to use. 
Generally speaking, Keras provides two different 
APIs related to modelling, the “Sequential” API and 
the “Functional” API. The “Functional” model is 
primarily used in complex problems with multiple 
input sources and output targets, with more than one 
input sensor and output sensor needed, when layers 
need to be shared or when “non-linear topology” is 
involved. In contradiction, the “Sequential” model is 
used in simpler problems with one input and output 
tensor, one input source and output target, and uses 
simple layer stacking while it is considered 
appropriate for more problems (Keras, 2020).



Following the selection of the model, we started 
building the required layers. The first layer built 
resulted more from code requirements than from 
analysis. While the images were loaded by code, the 
output's shape differed from the required 1-
dimensional input required for the input tensor/layer. 
By exploring the “input_shape variable”, we can 
understand that the initial input had three 
dimensions, with 32 elements in the first two 
dimensions and three in the third, which, in our case, 
represents images with RGB values of 0-1 float. 
After flattening the inputs, the output is of one 
dimension with 3,072 elements (having unrolled the 
three dimensions of 32x32x3), which is acceptable 



input for the layers-to-come. Providing the input as is 
through a multidimensional input/tensor may be 
technically possible. However, for such a volume of 
images, this process would have needed to be more 
convenient and not as computationally expensive 
(EDUCBA, 2023).



As the input layer/tensor is now in the required 
shape and format, we then had to investigate the 
required hidden layers. By specifying two of the 
hidden layers as Dense (1st and 3rd line of code), 
we instructed the code that every neuron of the layer 
should receive input from all the neurons of the 
previous layer. The Dense layer is also commonly 
used for image classification, thus serving our 
purpose (Dumane, 2020). In between the Dense 
layers, we have also included a Dropout layer. A 
dropout layer is not adding another layer in the 
process per se (as seen in the second image) but 
affects other hidden or visible layers, such as the 
two Dense/hidden layers in our case. Dropout layers 



prevent overfitting and provide the capability of 
"combining exponentially many different neural 
network architectures efficiently" (Srivastava et al., 
2014). In our case, the dropout rate is set to 0.5 float, 
effectively dropping 1 out of 2 (or 50%) of the input 
units.



From all the layers already discussed, the most 
interest is concentrated around the two Dense 
layers. This is because of the number of arguments 
available, the research performed, and how we 
selected the used activation and initializers. 
According to the available documentation, Dense 
layers can accept arguments such as the units 
(neurons), the activation function, kernel and bias 
initializers, regularizers and constraints, and activity 
regularizers. To find the best model for our data, we 
worked with the test dataset with early stopping (as 
explained earlier) on the number of epochs and a 
set number of neurons, by iterating through the 
different options. Our code iteration initially used four 



different kernel and activity/output regularizers. 
Considering that the regularizers apply a penalty, the 
outcome signified that no penalty was needed (Keras, 
2020). At the same time, we iterated through 12 
different initializers (applying random weighting 
through different methods) in the kernel and the bias. 
Several initializers were proven to perform the best, 
with marginal differences, such as the zeros kernel 
initializer with truncated normal, he uniform or he 
normal bias initializer. Activations are also an 
essential part of the hidden layers as they are 
essentially the data transformation functions of the 
input data to output data (ProjectPro, 2022). Our 
iteration tested nine different activation functions with 
selu (Scaled Exponential Linear Unit), elu
(Exponential Linear Unit) and softmax (which applies 
probability distribution) performing marginally better. 
The argument exploration was one of the most critical 
parts of the project, as it allowed us to narrow down 
the available argument values to the most interesting 
and better-performing ones.



● As far as the model optimisation goes, after 
defining the input and hidden layers, we also 
had to define the output layer. The output layer 
followed the previous convention of using a 
Dense layer. The number of neurons was set to 
10 to match the number of features in the 
classification problem. The output layer applies 
the softmax activation, as is the common 
standard, since this puts predictions in an 
interpretable probability format. After defining 
the output layer, we had to define the model 
compilation. The compilation instructions check 
for errors in the previously defined code and 



define the loss function, the activator and the 
metrics. The loss function used has already been 
explained in a previous slide, while for the 
optimiser, we followed the same approach of 
looping through different optimisers. Even though 
the Adam optimiser is the standard used, we 
discovered that Adamax, a variant of the Adam 
optimiser,  performed better for our problem. 
Finally, on the accuracy argument, the accuracy 
was set by using the argument "acc". This allows 
the Keras library to handle the accuracy metrics 
based on the given loss function.

● Given that the used loss function was set to 
sparse categorical accuracy, the accuracy 
function used corresponds to the sparse 
categorical accuracy, which calculates how often 
predictions match integer labels (Keras, N.D.; 
Keras, 2019). On the model fitting part of the 
code, which tests how well the model performs in 
generalized data, based on the provided training, 
apart from the epochs used (for which we used 
early stopping), we also found the optimal batch 
size to be 128, to train the model on part of the 
data, then performing a gradient update and 
continuing with the next set/batch of data 



through the different arguments were performed, 
to find the best performing ones, the iterations 
limited the available options of the best 
parameter values. The iterations did not provide 
the final architecture, which is a product of 
manual trials on different numbers of layers used 
and different argument parameters based on the 
iteration results combined with discipline-specific 
knowledge and research. This resulted in an 
accuracy of 0.6410 and loss of 1.0093 in the 
training data, while in the validation data the 
model performed with an accuracy of 0.5808 and 
loss of 1.2236. The loss, representing the 
summarization of the errors, and in our model 
has a high value, even though the accuracy 
metric is above average, effectively representing 
a 0.58 (58%) accuracy, with significant errors, 
which may be explained by prediction outliers.



● During development of our ANN model it 
became clear that we were unlikely to be able to 
get it anywhere near to the 80-90% accuracy 
that were we looking for. 

● Convolutional Neural Networks (CNNs) are 
excellent for image classification problems 
(Sultana et al, 2018). This is because the 
convolutional layers extract the features, as 
explained by Wang et al (2020), with each layer 
extracting ever more complex features.

● After checking with the tutor that it was OK to 
explore CNNs alongside ANNs, we started a 



parallel development to ensure that we were able 
to get a model to an acceptable accuracy figure 
for the project.



● Since we were already quite a long way through 
our ANN model development, we started the 
CNN with the “best so far” parameters from the 
ANN, which were:

● Adam for the optimiser, ReLU for the activation 
function, which is also the most popular 
activation function according to Zhang et al 
(2021) and Charma et al (2020), and batch size 
of 128. 

● Categorical crossentropy loss function was used 
because it is considered best for multiclass 
classification problems according to Browlee



(2021).

● Default kernel and bias initialisers of 
glorot_uniform and zeros respectively were used 
because we hadn’t selected optimal values from 
the ANN yet. Output activation softmax was 
used, as is standard for multiclass classification 
(Sharma et al 2020).

● With those parameters set we proceeded to 
experiment by changing a single parameter at a 
time, adjusting up or down depending the results. 
The parameters changed were:

● The number of convolutional layers and the 
number of filters and the kernel size within each 
layer.

● The number of pooling layers and the filter size of 
each pooling layer.

● The number of neurons and layers in the fully 
connected layers.

● The batch size.

● And the stride size.

● We used the early stop function again to 
determine the number of epochs.

● With this approach we got to around 70% 



on the bottom right.



● Part-way through development the CNN 
seminar introduced dropouts and padding. We 
did a little more research and then incorporated 
both features into our model with immediate 
results.

● The dropout increased accuracy a little, but it 
significantly reduced overfitting, meaning we 
could push the models for longer to achieve 
better results.

● When we introduced “same” padding it also 
improved accuracy, but more significantly it 
opened-up more options for kernel and filter 



sizes because the convolutional layer was no 
longer reducing the spacial dimensionality of the 
output, which only started at 32x32 so didn’t take 
long to get to 1x1.

● We also discovered that the number of filters is 
generally a power of two (Dertal, 2017), with the 
number increasing with each layer due to the 
increasing complexity of the feature maps, so we 
started to adopt a 64, 128, 256 filters design.

● With results significantly improved, and the ANN 
model now finished, we applied any deltas from 
the ANN model to the CNN model to see if it 
could be improved even further.

● We found that changing the optimiser from adam
to adamax improved the model, so we kept that 
change.

● The other parameters from the ANN model, being 
elo activation, HeUniform kernal initialiser and 
TruncatedNormal bias initialiser all diminished 
the model, so they were not used.

● We then tried a rectangular pooling filter of (3x2), 
having previously only tested square filters. 
Surprisingly, that improved the model, so we 
tested other rectangular filters, but they all 



diminished the model, so we kept the (3x2) filter.

● Finally, once we had the best model that we 
could get, we converted the images to greyscale 
to see if that made any improvement. The model 
diminished so we kept it at RGB.



● This is a diagrammatic representation of our 
final model.

● It has:

● 32x32x3 RGB input

● 3 convolutional layers with (3x3) kernels and 
filters increasing from 64 through 128 to 256

● 3 pooling layers with filter size (3,2), (3,2), (2,2). 
The final filter size of (2,2) was to avoid the final 
output being 1x1. 

● A fully connected single layer with 800 neurons

● A dropout of 30% after every pooling layer and 



after the fully connected layer

● A batch size of 128

● And ReLU activation

● And not shown on the diagram, we had:

● Adamax optimiser

● And Default kernel initialiser of glorot_uniform and 
bias initialiser of zeros



● Here are some code snippets of the final model 
to show how it was built.

● We can see on the right that the size going into 
the flatten layer is 3x3 as a result of the final 
pooling filter being 2x2 as explained before.

● So how did this model perform? Let’s find out on 
the next slide.



● We were really pleased to get an accuracy 
score of 82.44% against the validation set after 
39 epochs, with a loss of 0.53. 

● The loss and accuracy charts show a clear 
levelling-off but no marked downturn in 
performance.

● Most importantly, when the model was finally 
tested on the unseen test data set it achieved 
an accuracy score of 82.08%, so it was 
performing very consistently.

● The confusion matrix of the test results shows 
how well it matched each class individually. We 



can see that most classes scored very well, with 
ship being the best. The worst by some margin 
was cat, which was incorrectly matched with dog 
more than any other class.

● Overall, we felt it was a very good result.



Before we conclude, this is a summary of the final 
ANN and CNN models with their results. We can 
see, as already explained, the validation accuracy 
of ANN was 58% after 108 epochs and the 
validation accuracy of the CNN was 82% after 39 
epochs, with test accuracy also of 82%



● As a team we were very happy with the final 
results of our ANN and CNN models. We got the 
accuracy as high as we were able to in the time 
given.

● Most importantly we all learned a lot about 
building neural networks. The learning included:

● The functions of the hyperparameters and why 
tuning is key to model performance.

● That increasing neurons and layers can increase 
accuracy but can also lead to overfitting, and it 
increases computational demands.

● That dropout can be used to mitigate overfitting 



and increase accuracy.

● We learned the structure of convolutional layers 
and pooling layers in CNNs and how to optimise
them for image classification.

● That increasing epochs increases accuracy 
through backpropagation, but too many epochs 
leads to overfitting so the early stop function is 
useful to prevent that.

● And we learned that it’s actually quite easy to 
build machine learning models in Python using 
the Keras library.

● We felt that we worked very well as a team. We 
collaborated well, we were mature in how we 
divided the work, and we kept in regular contact.

● If there was one area that could’ve been 
improved, it was identification of a best practice 
set of parameters to start building the model 
from. We did search and found some pointers, 
such as ReLU being good for multiclass 
classification, but most literature suggested that 
trial and error is the best way to find an optimal 
model, which is what we did. We feel that with 
more research we might have been able to find a 
more specific set of starting guidelines though.



Finally, these were the references used within this 
presentation.



● And here.

● Thank you.


